Representing ideals on Polish spaces

Adam Kwela

Polish Academy of Sciences

February 1, 2013

Joint work with Marcin Sabok

Suppose that X is a Polish space and I is a σ -ideal on X containing all singletons. Given a dense countable set $D \subset X$ we define the ideal

$$J_I = \{a \subset D : cI(a) \in I\}.$$

Suppose that X is a Polish space and I is a σ -ideal on X containing all singletons. Given a dense countable set $D \subset X$ we define the ideal

$$J_I = \{a \subset D : cI(a) \in I\}.$$

Given an ideal J on a countable set E we say that J is represented on a Polish space if there are X, I, D as above and a bijection $\rho: E \to D$ such that $J = \{a \subset E : \rho[a] \in J_I\}$.

Suppose that X is a Polish space and I is a σ -ideal on X containing all singletons. Given a dense countable set $D \subset X$ we define the ideal

$$J_I = \{a \subset D : cI(a) \in I\}.$$

Given an ideal J on a countable set E we say that J is represented on a Polish space if there are X, I, D as above and a bijection $\rho: E \to D$ such that $J = \{a \subset E : \rho[a] \in J_I\}$. If X is compact, then we say that J is represented on a compact space.

Suppose that X is a Polish space and I is a σ -ideal on X containing all singletons. Given a dense countable set $D \subset X$ we define the ideal

$$J_I = \{a \subset D : cI(a) \in I\}.$$

Given an ideal J on a countable set E we say that J is represented on a Polish space if there are X, I, D as above and a bijection $\rho: E \to D$ such that $J = \{a \subset E : \rho[a] \in J_I\}$. If X is compact, then we say that J is represented on a compact space.

Examples

$$NWD(\mathbb{Q}) = \{ a \subset \mathbb{Q} \cap [0,1] : a \text{ is nowhere dense} \}$$
$$NULL(\mathbb{Q}) = \{ a \subset \mathbb{Q} \cap [0,1] : cl(a) \text{ is of Lebesgue measure zero} \}$$

A (1) > A (2) > A

For an ideal J on ω the equivalence relation E_J on 2^{ω} is given by $xE_Jy \Leftrightarrow x \triangle y \in J$.

For an ideal J on ω the equivalence relation E_J on 2^{ω} is given by $xE_Jy \Leftrightarrow x \triangle y \in J$.

Theorem (Zapletal, 2012)

Let J be an ideal represented on a compact space.

For an ideal J on ω the equivalence relation E_J on 2^{ω} is given by $xE_Jy \Leftrightarrow x \triangle y \in J$.

Theorem (Zapletal, 2012)

Let J be an ideal represented on a compact space. (a) Suppose that E is an equivalence relation of a turbulent action. Every Borel homomorphism from E to E_J maps a comeager set to a single E_J -equivalence class.

For an ideal J on ω the equivalence relation E_J on 2^{ω} is given by $xE_Jy \Leftrightarrow x \triangle y \in J$.

Theorem (Zapletal, 2012)

Let J be an ideal represented on a compact space. (a) Suppose that E is an equivalence relation of a turbulent action.

Every Borel homomorphism from E to E_J maps a comeager set to a single E_J -equivalence class.

(b) Suppose that J is represented by a $\Pi_2^0 \sigma$ -ideal of compact sets. Every Borel homomorphism from E_J to countable structures maps a comeager set to a single equivalence class.

Conjecture (Sabok-Zapletal)

For any ideal J on a countable set the following are equivalent: (a) J is represented on a compact space; (b) J is dense Π_3^0 and weakly selective.

Conjecture (Sabok-Zapletal)

For any ideal J on a countable set the following are equivalent: (a) J is represented on a compact space; (b) J is dense Π_3^0 and weakly selective.

Definition

We say that an ideal J on a countable set D is weakly selective if for any $a \notin J$ and any $f : a \to \omega$ there is $b \subset a$ with $b \notin J$ such that f restricted to b is either one-to-one or constant.

An ideal J on a countable set is dense if any infinite set contains an infinite subset belonging to the ideal.

An ideal J on a countable set is dense if any infinite set contains an infinite subset belonging to the ideal.

The following definition is a variation of Todorčević's notion of countably separated gaps.

Definition

An ideal J on a countable set is dense if any infinite set contains an infinite subset belonging to the ideal.

The following definition is a variation of Todorčević's notion of countably separated gaps.

Definition

We say that an ideal J on a countable set D is countably separated if there is a countable family $\{x_n : n \in \omega\}$ of subsets of D such that for any $a, b \subset D$ with $a \notin J$ and $b \in J$ there is $n \in \omega$ with $a \cap x_n \notin J$ and $b \cap x_n = \emptyset$.

Main Theorem (K.-Sabok)

For any ideal J on a countable set the following are equivalent:
(a) J is represented on a Polish space;
(b) J is dense and countably separated;

Main Theorem (K.-Sabok)

For any ideal J on a countable set the following are equivalent:
(a) J is represented on a Polish space;
(b) J is dense and countably separated;
(c) J is represented on a compact space.

Given two ideals J, K on ω we write $J \leq_{RB} K$ and say that J is Rudin-Blass below K if there is a finite-to-one $f : \omega \to \omega$ such that

$$a \in K \Leftrightarrow f^{-1}[a] \in J,$$

for every $a \subset \omega$.

Given two ideals J, K on ω we write $J \leq_{RB} K$ and say that J is Rudin-Blass below K if there is a finite-to-one $f : \omega \to \omega$ such that

$$a \in K \Leftrightarrow f^{-1}[a] \in J,$$

for every $a \subset \omega$. J and K are Rudin-Blass equivalent if $J \leq_{RB} K$ and $K \leq_{RB} J$.

Given two ideals J, K on ω we write $J \leq_{RB} K$ and say that J is Rudin-Blass below K if there is a finite-to-one $f : \omega \to \omega$ such that

$$a \in K \Leftrightarrow f^{-1}[a] \in J,$$

for every $a \subset \omega$. J and K are Rudin-Blass equivalent if $J \leq_{RB} K$ and $K \leq_{RB} J$.

Corollary (K.-Sabok)

The class of ideals represented on Polish spaces is invariant under Rudin-Blass equivalence.

Descriptive complexity of ideals represented on Polish spaces

Theorem (K.-Sabok)

If J is an analytic ideal represented on a Polish space, then it is Π_3^0 -complete.

Descriptive complexity of ideals represented on Polish spaces

Theorem (K.-Sabok)

If J is an analytic ideal represented on a Polish space, then it is Π_3^0 -complete.

Corollary (K.-Sabok)

If J is a coanalytic ideal represented on a Polish space, then it is either Π_3^0 -complete or Π_1^1 -complete.

Thank you!

< ● → < ●

▶ ★ 臣 ▶

æ