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Ideals represented on Polish spaces

Definition

Suppose that X is a Polish space and I is a σ-ideal on X
containing all singletons. Given a dense countable set D ⊂ X we
define the ideal

JI = {a ⊂ D : cl(a) ∈ I} .

Given an ideal J on a countable set E we say that J is represented
on a Polish space if there are X , I , D as above and a bijection
ρ : E → D such that J = {a ⊂ E : ρ[a] ∈ JI}.
If X is compact, then we say that J is represented on a compact
space.

Examples

NWD(Q) = {a ⊂ Q ∩ [0, 1] : a is nowhere dense}
NULL(Q) = {a ⊂ Q ∩ [0, 1] : cl(a) is of Lebesgue measure zero}
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Motivation

Definition

For an ideal J on ω the equivalence relation EJ on 2ω is given by
xEJy ⇔ x4y ∈ J.

Theorem (Zapletal, 2012)

Let J be an ideal represented on a compact space.
(a) Suppose that E is an equivalence relation of a turbulent action.
Every Borel homomorphism from E to EJ maps a comeager set to
a single EJ -equivalence class.
(b) Suppose that J is represented by a Π0

2 σ-ideal of compact sets.
Every Borel homomorphism from EJ to countable structures maps
a comeager set to a single equivalence class.
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Characterization of ideals represented on Polish spaces

Conjecture (Sabok-Zapletal)

For any ideal J on a countable set the following are equivalent:
(a) J is represented on a compact space;
(b) J is dense Π0

3 and weakly selective.

Definition

We say that an ideal J on a countable set D is weakly selective if
for any a /∈ J and any f : a→ ω there is b ⊂ a with b /∈ J such
that f restricted to b is either one-to-one or constant.
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Characterization of ideals represented on Polish spaces

Definition

An ideal J on a countable set is dense if any infinite set contains
an infinite subset belonging to the ideal.

The following definition is a variation of Todorc̆ević’s notion of
countably separated gaps.

Definition

We say that an ideal J on a countable set D is countably separated
if there is a countable family {xn : n ∈ ω} of subsets of D such
that for any a, b ⊂ D with a /∈ J and b ∈ J there is n ∈ ω with
a ∩ xn /∈ J and b ∩ xn = ∅.
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Characterization of ideals represented on Polish spaces

Main Theorem (K.-Sabok)

For any ideal J on a countable set the following are equivalent:
(a) J is represented on a Polish space;
(b) J is dense and countably separated;

(c) J is represented on a compact space.
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The Rudin-Blass reduction

Definition

Given two ideals J, K on ω we write J ≤RB K and say that J is
Rudin-Blass below K if there is a finite-to-one f : ω → ω such that

a ∈ K ⇔ f −1[a] ∈ J,

for every a ⊂ ω.

J and K are Rudin-Blass equivalent if J ≤RB K and K ≤RB J.

Corollary (K.-Sabok)

The class of ideals represented on Polish spaces is invariant under
Rudin-Blass equivalence.
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Descriptive complexity of ideals represented on Polish
spaces

Theorem (K.-Sabok)

If J is an analytic ideal represented on a Polish space, then it is
Π0

3-complete.

Corollary (K.-Sabok)

If J is a coanalytic ideal represented on a Polish space, then it is
either Π0

3-complete or Π1
1-complete.
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Thank you!
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